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The field-theoretic approach to critical phenomena is extended to deal with 
critical dynamics far from equilibrium. In particular, the macroscopic evolu- 
tion equation for the average order parameter is derived in a manner 
parallel to the derivation of the equation of state. The method is illustrated 
by deriving the scaled macroscopic equation of motion for the time- 
dependent Ginzburg-Landau model near the critical point for dimension- 
ality near four. 

KEY W O R D S  : Critical phenomena; far from equilibrium; time-dependent 
Ginzburg-Landau model. 

1.  I N T R O D U C T I O N  

Recently, the method of renormalized field theory successful in equilibrium 
critical phenomena <1~ was extended to dynamic critical phenomena. (2-4~ It  
was realized, furthermore, that such an approach is also useful to study 
phenomena near a critical point, where deviations from equilibrium are not 
necessarily small. ~5~ Here we further develop the approach by presenting a 
method for calculating the generating functional F [Eq. (45)], which plays 
the central role in this approach, ~4~ and the method is illustrated by deriving 
from F the macroscopic evolution equation for the spatially uniform average 
order parameter  for the time-dependent Ginzburg-Landau (TDGL) model, 
which conforms to the dynamic scaling law. ~6~ 

In the following section we present the general perturbation scheme for 
obtaining F; the T D G L  model is discussed in Section 4. 

We will see that our treatment of  critical dynamics far f rom equilibrium 
closely parallels that of  equilibrium critical phenomena. In particular, our 
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derivation of the macroscopic evolution equation for the average order 
parameter parallels that of the equation of state. 

2, FIELD-THEORETIC M E T H O D  

Let us start with the general stochastic model equation for the probability 
distribution function P(S, t) of the variables S = {$1, $2,...} in vector 
notation: 

[(8/8t) + H(S, S)]P(S, t) = 0 (1) 

where 

~ = - ~l~m~ (2) 

and the index i or S specifies not only the type of variable but also the quasi- 
continuous wave vector or spatial coordinate. In the stochastic operator 
H, S~ always comes to the right of all the S's. 

We now introduce the time-dependent source fields h t = {hi t, h2t,...} 
and ~ t =  {~lt, ~2t,...} as in Refs. 4 and 5 and define the total stochastic 
operator H t by 

Ht(g,S)  = H ( ~ , S ) - ~ t .  ~ _ h  t .  S (3) 

The stochastic equation 

[(a/et) + Ht(S, S)]Pt(S) = 0 (4) 

describes the time evolution of Pt(S), which is in general not normalized in 
the presence of h t. We now write 

= ~t + ~t (Sa) 

S = m t + d~ t ( S b )  

where r~ t and m t are some functions of space and time to be specified later. 

Substituting (5) into H t, which is then expanded in ~t and d~ t, we find that 
H takes the form 

~in l l .~.  j t  �9 �9 t t t H(~, S) = ~ ~,y, t~({t}{J})~q �9 �9 �9 ~,,~,1 "'" ~'~ (6) 

where J[~ is written more explicitly as Jz~({i}, {j}, art, mr). In the following it 
is convenient to introduce the reference distribution function Pot(S) given by 

P0t(S) = 8(S - m t) (7) 

with 8(x) = 1-I, 8(xt); we then readily find 

[(SlOt) + Hot]Pot(S) = 0 (8) 
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with 

t "" t t Ho t = _ f i t .  ~ + ~ t .  ,V - mr. fi~ + ~ s~(,:)~, r 
i i  

We now split H t as 

where 

Ht(~S) = C ~ + Ho' + H :  

HI t - Hd + Hd 

(9) 

(lO) 

(11) 

dt Ct) exp + [-- fti: Hi(t)] exp + ( -  ftlt dt Hot) ) P~~ 

dtCt) exp+[- fs H~(t)])P~:(S) (16) 

H~(t) -= [exp+(- s HoS) ]Hit exp_(ff:ds Ho ~) (17) 

Here tf is some distant time in the future where we assume fit to vanish: 

flit, = 0 (18)  

t =  t l a s  

\ \ , J r  o 

= ( e x p ( -  ft ? 

where 

C t = C(fit, m t, ~t, hi) __= H0ht, m t) + fiat. fit _ (~t. fit + h t . m9 (12) 

H ? -  M t �9 ,1;~ + ~ t .  r  (13) 

with 

M t = j t  ~ + fit _ ~t, hT/l t = jtol _ ~t  _ h t (14) 

where J~o and J~)l are the vectors whose ith components are Jt~o(i) and 
Jto~(i), respectively. Finally, /-/2 is the remainder, which is identical to 
H(g ,  S) except that J0to, J~o, Jo~l, and J h  are set to zero. 

Let us now suppose that U(S)  coincides with Pot(S) at some distant 
time in the past t = to. This should not be a real restriction for ergodic 
systems since the memory of  the initial distribution will be lost beyond a 
certain time after to, which can be chosen to be arbitrarily far into the past. 
The formal solution of (4) 

to ds HS(g, S)]}P~o(S) (15) {ex,+[ f 
where exp+ is the usual time-ordered exponential, can be rewritten for 
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Introducing the notation 

we obviously have 
f dS . . . .  <0[ . . . .  (19) 

<oI, i ,  ~, = o (2o) 
Now, the reference distribution function (7) is not a good first approxima- 

tion for many systems of physical interest and we construct instead a Gaussian 
distribution function Po t , which obeys 

with 

[(a/at) + H.Wo' = o (21) 

in the form 

where 

. ( , )  = [*(')I, |  
[q~(t)] [q~',J 

= ds [e,_(s ,)}o 
" =  ['X' , ol 

- (JI1) r ] 

(27) 

(28) 

(29) 

W -- Ho t + �89 ~ 4o(/J)~,t~ t (22) 
o" 

and with the initial condition P~o = Po to. We then introduce the ket vector 
Io> by 

l0 ) = pt ,  (23) 

and then we find 

Pt,(S) = @xp(- ft~ dt Ct) exp+[- s dt H'(t)]},O) (24) 

H'(t ) - [ exp + ( - s ds HgS) ]H't exp_ ( s ds Hg s) (25) 

where H 't is identical to HI except that J~0 is set to zero. H'(t) is obtained 
from H 't by replacing ~t and 4; t by qS(t) and ~(t), defined by 

Since the commutators of Ho t and r  and ~t are linear combinations of 
Ca t and ~jt, (26) can be written as a transformation between the two vectors, 
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and J~, and J2to are the matrices whose U elements are j r  (i/) and J~o(/J), 
respectively, and the superscript T denotes the transpose of a matrix. On the 
other hand, by (21) we can verify that 

where 

Pgt/= [exp+ (- fs ~" 

= (exp+ [ -  fti~ 

 (t)=[exp+(-ff'dsHo )]jptexp-( trdsHo 

(30) 

(31) 

This means that, by (19) and (20), P~r is properly normalized since Po ts is 
normalized" 

f a s  e.',(s) = (olo) = 1 (32) 

Using (26) and (30), we obtain 

dO(to)lO) = [exp + (-- flrds Hg~) ]dptop~o = O (33a) 

Also, since by (28) and (29), 5gjt) is a linear combination of ~}r, we have 
by (2O) 

(0I~(t0) = 0 (33b) 

At this point the analogy of our formalism with that of the quantum 
field theory is evident. ~bi(to) and ~(to) are annihilation and creation operators 
of a particle in the state i, respectively, and the bra and ket vectors (01 and 
10) represent the free vacuum state. The time evolution of the free vacuum 
state in the interaction representation in the presence of external source 
fields h ~ and h~ is described by the S-matrix operator [see (24)]: 

S(t,, to) =- exp+[- fi~dt H'(t) ]J (34) 

The applicability of Wick's theorem for expectation values like 

(0 ldg~(tO~bj(ti) ... ~,(fi) 10) (35) 
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is evident, where, however, two types of free propagators are required be- 
cause Hg t contains processes in which two particles are created from the 
vacuum: 

G,~(tt') = (0l(r + 10) (36) 

Ft j ( t t ' )  = <Ol(r162 + [0> (37) 

where ( . . . ) +  denotes time ordering. We also have 

(Ol(f~,(t)r = 0 (38) 

These propagators satisfy the following equations: 

~t Gu(tt') = - Z (J~l),kGkj(tt') + 8u 8(t -- t') (39) 
k 

~- F . ( t r )  = - Z ( ] ~ , ) , . F . ~ ( t c )  - ~ .  (]~o),.G~.(t't) 
8t k 

which are to be solved under the conditions 

Gu(tt' ) = 0  for t < t '  

~ , j ( t t )  = ,4 j ( t )  

(40) 

where crfj(t) is the variance of r for the Gaussian distribution p~r. 
So far ~a t and m t are completely arbitrary except that r~tr Should vanish. 

In fact, the most convenient choice for them is to determine them self- 
consistently so that ~t  and m t become the averages of Nt and S t in the 
presence of source fields, respectively. This will be done in the next section 
using the generating functionals. 

Feynman diagrams for the perturbation series of (34) can be easily 
constructed, where we let the time run from the right to the left. See Fig. 1, 
which is self-explanatory. 

t t t '  

~ct) G(tt') , . / /J  

~( t )  F(t t ' )  Jlt2( i J I ) ~i {t) ~j(t)~L (t) 

Fig. 1. Some elements of Feynman diagrams. 
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3. G E N E R A T I N G  F U N C T I O N A L S  

Renormalized field theory for critical dynamics far from equilibrium is 
conveniently couched in the language of generating functionals5 ~,5~ First 
we consider 

W{fi, h} = In f dS Pt,(S) 

= - dt  C ( &  t, m e, fit, h t) + ln(0lS(tt,  to)10) (41) 
o 

where two terms on the right-hand side depend on ffl t and m t as well. Such 
dependences, however, should cancel each other because the original defini- 
tion of W does not contain {fia t, mr}. We now choose ffl t and m t by 

f ia t= 3 W /  afi t (42a) 

m r =  3Wl ah '  (42b) 

This implies, in view of (12) and (41), that 

8 ln(0jSj0 > = 8 In (0 lSJ0 )=  0 (43) 

or 

<01(4( t ) s )+  10>/<0ls l0> -- < 0 [ ( 4 ( t ) s )  + 10>/<0ls l0> -- 0 (44) 

where fiat and m t are kept fixed during the differentiations in (43). 
Diagrammatically, the second term of (41) is represented by connected 

graphs without external lines such as those shown in Fig. 2. The conditions 
(44) are shown in Fig. 3, where cross-hatched circles represent the sum of all 
the connected graphs with one leg. 

The generating functional W{fi, h} produces through differentiations with 
respect to fit and h t the various response and correlation functions. (4) These 

Fig. 2. Diagrams contributing to W. (a) 

Fig. 3. Diagrams representing the con- 
ditions (44). 

(b) (c) 

Q=0 O 
(a) (b) 

=0 
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<2) Fig. 4. Severing of articulation lines. 

functions in general contain long range space-time correlations, which arise 
in graphical terms from articulation lines, the removal of which severs a 
connected graph into more than two disconnected parts, as is exemplified 
in Fig. 4. Direct calculation of W{h, h} in a reasonable approximation hence 
is rather cumbersome, requiring various sorts of resummations of graphs, 
which in effect amounts to solving "hydrodynamic"  equations. A better 
alternative is to consider the following Legendre transformation :cl,4,5> 

F { ~ ,  m}  = - W{h,  h} + f dt (fit. ~t + h t . m t ) 

= f [H(ffl t, m e) + ffl t .  rh t] dt ln(01S]0) (45) 

The second term of (45), which still contains ~t and h t ,must now be expressed 
entirely in terms of 1~ t and m ~ through (42). The change of variables from 
~t and h t to lia t and m t associated with the Legendre transformation is the 
analog of the corresponding well-known change of variables from the 
fugacity to the density in the theory of classical fluids. Once we choose 
ff~t and m t to be independent variables, the conditions (44) guarantee the 
absence of articulation lines from the graphs of (0IS 10), which hence elimi- 
nates long-range correlations contained in W{fa, h}. a A few typical diagrams 
of P{~, m} are shown in Fig. 5. 

From (42) and (45) we find 

~t = 3F{rh, m}/Sffn t (46a) 

h t = 3F{ffl, m}/3m' (46b) 

These equations turn out to be the equations of motion for ff~t and m t for 
given {ht} and {ht}. Now, the source fields are introduced here as artificial, 
unphysical fields, and hence are set to be zero in (46a) and (46b). Furthermore, 

3 It is true that the conditions (42a) and (42b) imply the absence of articulation lines 
also in W. However, the differentiations of W with respect to fit and h t to obtain 
response and correlation functions are to be taken at fixed {~t} and {mr}, where the 
conditions (42a) and (42b) will have to be violated. 

• )  
@ Fig. 5. Diagrams of F{g~, m}. 
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ffl t, which is the average of  tS t, is also zero in any physical state. On the other 
hand, the stochastic operator H(S,  S) has a general structure 

~,~g~(S, S) (47) 
i 

Hence H(ffa t = 0, m t) = 0 and l/> 1 in (6). Thus ln(01S[0 ) consists of graphs 
with free ends to the left, excluding those, such as the one shown in Fig. 3a, 
that are not allowed. Therefore we conclude by (45) that 

r(r~ = O, m} = 0 (48) 

implying that both sides of (46b) vanish in this case. The equation of motion 
for m t is thus given by 

[M'{ffl, 0 (49) m}] 

" ~  ]{~l/={o} = 

or, by (45), by the following: 

t i l t= [ 8H(*t 'm*)] + [S ln(0 lS]0) ]  ~ (50) 

where we have modified the last term of (50) as follows. First, the absence 
of articulation lines enables us to replace H'(t) by ~ ' ( t ) ,  given by 

1 I2I'(t) =_ ~ ~ Jt~ 

' 1 
+ ~ ~ E E J[n({i}{J})~l(t)"" ~h(t)~h (t)''" ~,.(t) (51) 

�9 �9 { i )  ( Y )  

where ~ .  is the sum over I and n such that l + n >t 3. With this, S is 

S =- exp+[- f~ dt lCl'(t)] (52) 

The superscript OPI (one-particle irreducible) means that all the diagrams 
with articulation lines from the resulting perturbation expansion have to be 
removed�9 

4. T D G L  M O D E L  

Here we illustrate our general method by deriving the macroscopic 
equation of  motion for m t of the TDGL model near the critical point. The 
model is given by 

H(N, S) = - ( d r  &r)L[~(r) - (r - V2)S(r) - -~gS(r) a] (53) 
d 
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In order to eliminate divergences at short wavelength, we renormalize as 
follows: 

S-+ Zll2S, ~-+ Z-1t2~, L-+ ZE1L 
T -+ (Z2z + 3r)/Z, g "-+ Z lZ  - 2g (54) 

t-+(z/L)t, + HOT), r--,z lr 
where ST and the Z 's  are the renormalization constants, which contain all 
the divergences as the upper cutoff wave number goes to infinity. We then 
obtain 

H(g ,  S) = - f dr g(r)[S(r) - (~- - V2)S(r) - -~gS(r) 3] (55) 

The counter term Hcr containing Z, Z1, Z2, and ST is given by 

n c r =  f dr S{[(Z2 - 1)z + 3T -- (Z -- 1)V2]S + ~g(Z2 - 1)S 3} (56) 

The renormalization (54) was chosen so as to separate the renormalization 
associated with a purely dynamic quantity like L from that of the static part. 
Then, 

F = .f dx [H(fli', m t) + Hcr(fli', m')] + ZL .f flit#hi dx - ZLEln<01Sl0>] ~ 

(57) 

where 

= t t ,~ e x p + { - Z E l f d t [ I : I ' ( t ) +  Hbr( )]} (58) 
/(r'(t) is related to jq,t, which is the part of H that corresponds to (51), by 

fI'(t) = [exp+(-  ZE~ fttS ds Hg~) ]ITt'texp_(ZE~ f, tSds Hg s) (59) 

where Hg ~ is the part of H that corresponds to (22). Explicitly, we have 

~ = f { - # h ~ ,  + r~t~ ' _ rata,< _ (4~) ~ 

+ 6'[(r - V2)4, t + �89 } dr (60) 

a' ,  = �89 [mtflit($t) 2 + mt6t(~bt) 2 + �89 + ~_6t($,)3] dr (61) 

Hbr(t)  is related to Hbtr as in (59), where 

Hb~r _ Hcr(flit + (at, rn t + (~t) _ Hcr(flit, m t) (62) 

We now derive the macroscopic equation of motion for m t that corresponds 
to (49) when the dimensionality of space d is 4 - e with small e. The re- 
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. . . . . . .  

. _  . . . . . . . .  < 

Fig. 6. Vertices for the TDGL model. 

normalization group theory of critical phenomena tells us that the renormal- 
ized coupling constant g is of the order of e. Hence the last term of (57) can 
be treated by a perturbation theory, where, however, we suppose that gm 2 
is not small, as it is in the ordered phase. The building blocks of the diagram 
then consist of  the two types of propagators G and F, as shown in Fig. 1 
and the vertices as shown in Fig. 6 and those for H~z(t) ,  which are not shown 
explicitly. The propagators G and F now satisfy the following equations 
corresponding to (39) and (40): 

~ G ( x x ' ) =  1 [ - V 2  ~m(x) 2] ~(x (63) ~-5 - ~  ~ + ~ ( x x ' )  + - x ' )  

O--tO F(xx ' )  = l [ - r + z g m(x)2]F(xx ' )+  ~-Z G(x'x ) (64) 

where 

x = ( r , t )  

These propagators incorporate the effect of nonlinear coupling arising from 
averaged variable m(x), and hence we call them the mean field propagators. 

The terms up to O(g 2) of [ln(0]~ 10)] ~ are shown graphically in Fig. 7, 
where the cross denotes [3r + (Z2 - 1)r - ( Z  - 1)V2]ZL ~(x - x'), which 
arises from the counter term. 

Fig. 7. Diagrams for r{lia, m} of the TDGL 
model. 

(a) 

Z .... S 
2 

(ci 

(e) (f) 
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The constants  8r and the Z ' s  are determined by the normal iza t ion  
conditions.  For  this purpose  we introduce the following functions:  

y: ]Nz.n)({q}, r) = dt2 "'" dt, +n 
o o  o ~  

8z+~p 

x [Srhql(q ) . . .  8rhq, (h)8m, ,+l ( t ,+l ) - . .  8ms 

(65) 

where we have int roduced Fourier  componen t s  

m~(t) = ( m ( x )  e x p ( - i q r )  dr  

(66) 
t *  

r~q(t) = J r~(x) exp(iqr) dr  

The  five normal iza t ion  condit ions for  determining the five constants  8r, Z, 
Z1, Z2, and ZL are chosen to be 

f'(z.~(q = O, r = O) = 0 (67a) 

0-7 iq=o.~=~2 = 1 (67b) 

a f,(1.1) 
q=0.=~2 = 1 (67c) 

f,(1.a)(q~ = 0, r = / z  2) = g = u/z" (67d) 

f,(2.O)(q~ = 0, r = t~ 2) = - 2 Z L  (67e) 

where tz is the reference wave number  of  normal iza t ion  and u is the dimen- 
sionless coupling constant.  Note  that  (67a)-(67c) and (67e) are consistent 
with the f luctuation-dissipation theorem. 4 The results for 8r, Z, Z~, and Z2 
reduce to those already known,  and we only consider ZL. Namely ,  we have 

with fk = (2rr)-a f dk  

--2ZL = l~(2'~ = 0, r = t ~2) 

gZ (oo dt f f Fk~176176 (68) 
= - -2  + 6 Z L J _ ~  k D 

where Fk~ is the mean  field p ropaga to r  with m = 0, given by 

Fk~ = {exp[--(y~~ ~ (69) 

4 In terms of the functions F.~ introduced in Ref. 4 this theorem is 

- -  (iw/Zz)F2o(q(o) = r l l ( q ( o )  - I ~ l l ( -  q - -  t o )  
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with 

That is, 

7k ~ ---- t* 2 + k z (70) 

g  kfp 1. zL  = 1 - g o + + to+p)  

We evaluate the integration in (4 - E) dimensions to obtain 

ZL = 1 -- [(Su)2/e]k In 4 

where 

(71) 

(72) 

2~al 2 ] 
r(d/2) (2~r) ~ 

Now we want to derive the renormalized macroscopic equation of 
motion for m(t) = mq=o(t), which can be separated into two parts, i.e., the 
instantaneous part and the remainder, which may be called the noninstan- 
taneous part. (v The instantaneous part describes the time evolution of m t if 
the system is always in local equilibrium with given mt. It is expressed in 
terms of the equation of state. By a perturbation calculation in g the in- 
stantaneous part and the remainder are calculated up to the order g and up 
to the order g2 respectively. 

First let us write the Fourier-transformed propagators G and F, which 
obey (62) and (63), as 

I ftl ~Tk(s) ds/ZL] Gk(tl, t2) = exp -- (73) 

Fk(tl, t2) = (exp[-- ff217k(S) ds/ZL]}Ik(t2 ) (74) 

for tl > t2, where 

7k(t) = k 2 + r + �89 (75) 

and the variance lk(t) = Fk(tt ) obeys the following equation: 

ZL (8/Ot)Ik(t) = 2 -- 27i,(t)1k(t) (76) 

With the help of (76) we can separate out the instantaneous part of the 
following macroscopic equation of motion obtained from (57): 

ZLrh(t) = - { r m  + ~m3 + [(Z2 - 1)'r + Sr]m + ~ ( Z 1 - 1 ) m  a} 

8 
+ ZL ~ [In(OlglO}]?$~=o (77) 
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The last term is obtained from [ln(0]NI0)] ~ = (a) + (b) + (c) . . - ;  these 
terms are given graphically in Fig. 7. Explicitly, we have 

ZL 3-~(t) (a) = -- re(t) Fq(t, t) 
(~} = o 

/ , ( t)]  (78) 

where we have used (74) and (76). The first term of (78) is the instantaneous 
part, which diverges at short wavelengths. This divergence is canceled by 
the counter term in (77). The second term, which contributes to the non- 
instantaneous part, contains no divergence and is obtained as 

Sgm(t)Z~a,2,_ 1 o~ s_a,2{exp[_ ~_~ z ~ i -  I ' ( d )  f ~ ds 2 ,o(t)s] 

where use has been made of the equation 

I.(t) = ~fo= dsexp[- ~ f f  ds' ~.,,(t - s')] (80) 

which is obtained by integrating (79) with the boundary condition 
Iq(-oo) = 0. The contributions from the terms (b) and (c) are more com- 
plicated. However, as is shown in the appendix, we can extract the ultraviolet 
divergences as well as the contributions to the instantaneous part. The 
evaluation of these contributions becomes so complicated that here we will 
be content with the contribution linear in m, which is obtained from the 
second term of (A.6) by setting all the m in G and I ~ equal to zero. The 
ultraviolet divergence of the noninstantaneous part in (A.6) is contained in 
this linear term. By making use of the normalization conditions (67), we 
eliminate these divergences and we obtain the following scaled equation of 
motion with t~ = 1 : 

(Su*)P(2 -  � 8 9  ~ ( ~nSSt = -F( rh )  + ~=~/~  rh(t) d ~  -2+~'/2~ exp[-2~o(f)~] 

- e x p [ - 2 ~ ]  d~' ~o ( f - .~ ' ) ] }  

(Su*) ~ i "~ , . . . .  i-er~(~) erh(~ - ~)] 
+ T J o  a s ~ t s ; [ .  ~ ~ i  (81) ] 
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with po(t) -= 1 + �89 

lff ff 
and 

F(rh) = rh{1 

ds2j dsa exp[ -g ( s l  + sz + s~)] (82) 
1 Isis2 + (sl + s~)s.] 2 

, (  u, )[( +--~ + ~  1 +-~- rh  2 In 1 + ~ t h 2 )  - I ] ) + O ( ~  2) 

(83) 

where we have introduced the scaling variables t = ~-~'t and rh = mr -B, and 
the fixed-point value u* of u through Su* = (2~/3)(1 + %/54 + . . . ) .  The 
meanings and the values of  the exponents are the same as those found in the 
literature. ~I-8~ Strictly speaking, (81) is only correct to the order E. However, 
the present simple example shows how the renormalization of  the higher 
order terms can be carried out. Equation (81) coincides with the result 
obtained recently by Bausch and Janssen ~8~ to the first order in ~. 

5. C O N C L U D I N G  R E M A R K S  

In the preceding sections we have developed a method for finding the 
generating functional P and have derived from it the macroscopic evolution 
equation for the average order parameter. The method closely parallels that 
of equilibrium critical phenomena, r and the various results in equilibrium 
critical phenomena can be readily extended to our problem. We have already 
derived the dynamical scaling extended to this problem. ~5) The analyticity 
requirements for the equation of  state would imply similar requirements for 
the macroscopic evolution equation. 

A P P E N D I X  

The contributions to the macroscopic equation of motion from Fig. 7 
will be considered. The following formulas are useful for this purpose 
[see (76)]: 

lk(t) - Fk(tt) = Iu~ + Ik'(t) (A.1) 

with 

/kO(t) = [Tk(t) ]-  1, Ik'(t) = --ZL]k(t)lkO(t)/2 

For t > s we have 

Fk(ts) = Gk(ts)Ik(s ) (A.2) 
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and by (64) 

with 

7 eFk( t s )  
Gk(ts) = ~L ~ + Gk'(ts) 

G k'(tS) = - Zz[k(S) G k(tS )/2 

(A.3) 

(A.4) 

Jkl,k2,k3(t) -=- I k ~ ( t ) I k 2 ( t ) I k ~ ( t  ) - -  I ~ 1 7 6 1 7 6  ) (A.7) 

The third term has no ultraviolet divergence in its momentum integrals. The 

with 

The term (a) in Fig. 7 was considered in Section 4. The term (b) gives 

g2 ( ( (t dsFk(tS)Fp(tS)G-k-p(tS)m(s) ZL (b) = 2ZL Jk Jp J- 

= g2 ( ( (t ds Fk(tS)Fp(tS) ~-F-~sP(ts) m(s) 
2 j~j.j_~ 

g2 ( ( (t dsFk(ts)Fp(tS)Gk'(ts)m(s) (A.5) 
+ 2ZLJk&J_~ 

The second term has no ultraviolet divergence in its momentum integrals. 
By making use of Eqs. (A.2) and (A.3), the first term is further reduced to 

~g2 f f ft ds (8/8s)[Fk(ts)Fp(ts)F_k_p(tS)]m(s) 
-- ~R~  ~-~176  

= lg f fo lk(t),,(t)I_k_p(t)m(t) 

1g2 f f f '  ds Fk(tS)Fp(ts)F_k_p(ts)rh(s) 
- -  __ ' dkdD*d  ~ ~ 

~gZf f i o(t)ipO(t)iOk_p(t)m(t) 
"~" ~ ~ k ~ p  

- ~g2 fkfo fi~ ds Gk(tS)Gp(tS)G_k_p(tS)Ik~176176 

.2 C 61g2[L.,,kCp; f J k ' p ' - k - P ( t ) m ( t )  

--fl, fp;~odsGk(tS)Gp(ts)G_k_p(tS)Jk.,._k_p(S)th(s)] (A.6) 
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expression for the term (c) in Fig. 7 is 

8(c) g2m(t) ( ( (' dsau(ts)V_u(tS)ip(S) 
ZL ~ = 2Zz JkJvJ-= 

g2 fkf~,ft ds~F,(tS) F_k(tS)ip(s ) = g m(t) -~o 

e f fof, + ~ m(t) ds Gk'(ts)F_k(tS)I,(s) (A.8) 
- c o  

The ultraviolet divergence in the p integral in (A.8) is canceled by its counter 
term (f) in Fig. 7. The second term gives no ultraviolet divergence in its 
k integral. The first term becomes, on using Eqs. (A.2) and (A.3), 

�88 ds [OFk(ts)F_u(ts)/~slIp(s) 
o~ 

= �88 ~ fp I k ( t ) I - k ( t ) I p ( t )  

: �88 f ,  IkOI2k(t)I'O(t)+ �88 f,  Jk,-k,p(t) 

-- �88 ds F~(ts)f _k(ts)ip(s) (A.9) 
o~ 

Therefore, the ultraviolet divergence only remains in the k integral of the 
first term of (A.9) after adding the contribution from (f), which can be simply 

obtained by replacing fp Ip(s) in Eq. (A.8) by - [3T + (Z2 - 1)T + (Z -- 1)k2]. 

The resulting ultraviolet divergences, including the terms in Fig. 7, are 
canceled by the terms Her  and the second term of (57) as illustrated in the 
text (Section 4). Since the terms in (A.5) and (A.8) that have no ultraviolet 
divergence also contribute to the final form of the equation of motion, the 
scaled equation of motion becomes so complicated that the full expression 
will not be given here. Instead, we will be content with the simple approximate 
expression (81). 
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